Asymmetric Dimethylarginine Induced Apoptosis and Dysfunction of Endothelial Progenitor Cells: Role of Endoplasmic Reticulum Stress Pathway

نویسندگان

  • Sheng Ye
  • Xi Zhou
  • Jiafeng Lin
  • Peng Chen
چکیده

Asymmetric dimethylarginine (ADMA), an inhibitor of nitric oxide synthase, is a novel risk factor of cardiovascular disease. Endothelial progenitor cells (EPCs) bear typical endothelial characteristics and are thought to contribute to neovascularization by providing new endothelial cells (ECs) after arterial injury. Many studies have shown that ADMA can induce EPC apoptosis and dysfunction, but the underlying mechanism is not well understood. EPCs from umbilical cord blood were cultured in EGM-2 medium with particular growth factors and supplemented with 10% fetal bovine serum. The cells were treated with different concentrations of ADMA (5, 10, and 50 μmol/L). Endoplasmic reticulum (ER) stress marker levels were examined by western blot analysis. After 24-hour incubation, ADMA induced apoptosis of EPCs and significantly decreased the proliferation, migration, and vasculogenesis capacity of EPCs. We also found that ADMA treatment activated phosphorylated protein kinase RNA-activated-like ER kinase (PERK), a stress sensor protein in the endoplasmic reticulum (ER). The activated PERK induced 78 kDa glucose-regulated protein (GRP-78) and C/EBP homologous protein (CHOP) expression. Additionally, the inhibition of the ER stress pathway by Salubrinal (a specific ER stress inhibitor) can attenuate ADMA-induced apoptosis of EPCs. Overall, these observations indicate that ADMA may induce the apoptosis and dysfunction of EPCs through the ER stress pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric dimethylarginine downregulates sarco/endoplasmic reticulum calcium-ATPase 3 and induces endoplasmic reticulum stress in human umbilical vein endothelial cells

Cardiovascular disease is the leading cause of mortality in patients with chronic kidney disease. Endothelial cell injury and apoptosis may promote atherosclerosis and cardiovascular disease. The present study investigated the potential mechanisms of asymmetric dimethylarginine (ADMA)‑induced apoptosis in human umbilical vein endothelial cells (HUVECs). It was demonstrated that ADMA decreased B...

متن کامل

The Inhibitory Effect of Quercetin on Asymmetric Dimethylarginine-Induced Apoptosis Is Mediated by the Endoplasmic Reticulum Stress Pathway in Glomerular Endothelial Cells

Asymmetric dimethylarginine (ADMA) is considered an independent mortality and cardiovascular risk factor in chronic kidney disease (CKD) patients, and contributes to the development of renal fibrosis. Quercetin (QC), a natural component of foods, protects against renal injury. Here, we explored the possible mechanisms that are responsible for ADMA-induced renal fibrosis and the protective effec...

متن کامل

Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis

Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apopt...

متن کامل

Protective role of Gipie, a Girdin family protein, in endoplasmic reticulum stress responses in endothelial cells

Continued exposure of endothelial cells to mechanical/shear stress elicits the unfolded protein response (UPR), which enhances intracellular homeostasis and protect cells against the accumulation of improperly folded proteins. Cells commit to apoptosis when subjected to continuous and high endoplasmic reticulum (ER) stress unless homeostasis is maintained. It is unknown how endothelial cells di...

متن کامل

Regulation of c-Jun N-Terminal Protein Kinase (JNK) Pathway in Apoptosis of Endothelial Outgrowth Cells Induced by Asymmetric Dimethylarginine

BACKGROUND Endothelial outgrowth cells (EOCs) are terminal endothelial progenitor cells (EPCs). Asymmetric dimethylarginine (ADMA) has been identified as a novel risk factor for cardiovascular diseases. Our aim in the present study was to investigate the effect of regulation of asymmetric dimethylarginine (ADMA) on EOCs apoptosis and to explore the underlining mechanisms of c-Jun N-terminal pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017